Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.192
Filter
1.
Stem Cell Res Ther ; 15(1): 132, 2024 May 03.
Article in English | MEDLINE | ID: mdl-38702808

ABSTRACT

BACKGROUND: Induced pluripotent stem cells (iPSCs)-derived kidney organoids are a promising model for studying disease mechanisms and renal development. Despite several protocols having been developed, further improvements are needed to overcome existing limitations and enable a wider application of this model. One of the approaches to improve the differentiation of renal organoids in vitro is to include in the system cell types important for kidney organogenesis in vivo, such as macrophages. Another approach could be to improve cell survival. Mesodermal lineage differentiation is the common initial step of the reported protocols. The glycogen synthase kinase-3 (GSK-3) activity inhibitor, CHIR99021 (CHIR), is applied to induce mesodermal differentiation. It has been reported that CHIR simultaneously induces iPSCs apoptosis that can compromise cell differentiation. We thought to interfere with CHIR-induced apoptosis of iPSCs using rapamycin. METHODS: Differentiation of kidney organoids from human iPSCs was performed. Cell survival and autophagy were analyzed using Cell counting kit 8 (CCK8) kit and Autophagy detection kit. Cells were treated with rapamycin or co-cultured with human monocytes isolated from peripheral blood or iPSCs-macrophages using a transwell co-culture system. Monocyte-derived extracellular vesicles (EVs) were isolated using polyethylene glycol precipitation. Expression of apoptotic markers cleaved Caspase 3, Poly [ADP-ribose] polymerase 1 (PARP-1) and markers of differentiation T-Box Transcription Factor 6 (TBX6), odd-skipped related 1 (OSR1), Nephrin, E-Cadherin, Paired box gene 2 (Pax2) and GATA Binding Protein 3 (Gata3) was assessed by RT-PCR and western blotting. Organoids were imaged by 3D-confocal microscopy. RESULTS: We observed that CHIR induced apoptosis of iPSCs during the initial stage of renal organoid differentiation. Underlying mechanisms implied the accumulation of reactive oxygen species and decreased autophagy. Activation of autophagy by rapamacin and by an indirect co-culture of differentiating iPSCs with iPSCs-macrophages and human peripheral blood monocytes prevented apoptosis induced by CHIR. Furthermore, monocytes (but not rapamycin) strongly promoted expression of renal differentiation markers and organoids development via released extracellular vesicles. CONCLUSION: Our data suggest that co-culturing of iPSCs with human monocytes strongly improves differentiation of kidney organoids. An underlying mechanism of monocytic action implies, but not limited to, an increased autophagy in CHIR-treated iPSCs. Our findings enhance the utility of kidney organoid models.


Subject(s)
Apoptosis , Cell Differentiation , Induced Pluripotent Stem Cells , Kidney , Monocytes , Organoids , Humans , Induced Pluripotent Stem Cells/cytology , Induced Pluripotent Stem Cells/metabolism , Induced Pluripotent Stem Cells/drug effects , Organoids/cytology , Organoids/metabolism , Organoids/drug effects , Apoptosis/drug effects , Cell Differentiation/drug effects , Kidney/cytology , Kidney/metabolism , Monocytes/metabolism , Monocytes/cytology , Monocytes/drug effects , Pyridines/pharmacology , Pyrimidines/pharmacology , Sirolimus/pharmacology , Autophagy/drug effects , Coculture Techniques/methods , Macrophages/metabolism , Macrophages/cytology , Macrophages/drug effects
2.
PLoS Comput Biol ; 20(4): e1012054, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38648250

ABSTRACT

Neural organoids model the development of the human brain and are an indispensable tool for studying neurodevelopment. Whole-organoid lineage tracing has revealed the number of progenies arising from each initial stem cell to be highly diverse, with lineage sizes ranging from one to more than 20,000 cells. This high variability exceeds what can be explained by existing stochastic models of corticogenesis and indicates the existence of an additional source of stochasticity. To explain this variability, we introduce the SAN model which distinguishes Symmetrically diving, Asymmetrically dividing, and Non-proliferating cells. In the SAN model, the additional source of stochasticity is the survival time of a lineage's pool of symmetrically dividing cells. These survival times result from neutral competition within the sub-population of all symmetrically dividing cells. We demonstrate that our model explains the experimentally observed variability of lineage sizes and derive the quantitative relationship between survival time and lineage size. We also show that our model implies the existence of a regulatory mechanism which keeps the size of the symmetrically dividing cell population constant. Our results provide quantitative insight into the clonal composition of neural organoids and how it arises. This is relevant for many applications of neural organoids, and similar processes may occur in other developing tissues both in vitro and in vivo.


Subject(s)
Organoids , Organoids/cytology , Humans , Cell Lineage/physiology , Computational Biology , Neural Stem Cells/cytology , Neural Stem Cells/physiology , Stochastic Processes , Models, Biological , Neurons/physiology , Neurons/cytology , Brain/cytology , Brain/physiology , Cell Proliferation/physiology , Neurogenesis/physiology
3.
Biomaterials ; 308: 122560, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38603826

ABSTRACT

Cells assemble fibronectin, the major extracellular matrix (ECM) protein, into fibrillar matrices, which serve as 3D architectural scaffolds to provide, together with other ECM proteins tissue-specific environments. Although recent approaches enable to bioengineer 3D fibrillar fibronectin matrices in vitro, it remains elusive how fibronectin can be co-assembled with other ECM proteins into complex 3D fibrillar matrices that recapitulate tissue-specific compositions and cellular responses. Here, we introduce the engineering of fibrillar fibronectin-templated 3D matrices that can be complemented with other ECM proteins, including vitronectin, collagen, and laminin to resemble ECM architectures observed in vivo. For the co-assembly of different ECM proteins, we employed their innate fibrillogenic mechanisms including shear forces, pH-dependent electrostatic interactions, or specific binding domains. Through recapitulating various tissue-specific ECM compositions and morphologies, the large scale multi-composite 3D fibrillar ECM matrices can guide fibroblast adhesion, 3D fibroblast tissue formation, or tissue morphogenesis of epithelial cells. In other examples, we customize multi-composite 3D fibrillar matrices to support the growth of signal propagating neuronal networks and of human brain organoids. We envision that these 3D fibrillar ECM matrices can be tailored in scale and composition to modulate tissue-specific responses across various biological length scales and systems, and thus to advance manyfold studies of cell biological systems.


Subject(s)
Extracellular Matrix , Fibroblasts , Fibronectins , Tissue Engineering , Fibronectins/chemistry , Fibronectins/metabolism , Extracellular Matrix/metabolism , Extracellular Matrix/chemistry , Humans , Tissue Engineering/methods , Fibroblasts/metabolism , Fibroblasts/cytology , Animals , Tissue Scaffolds/chemistry , Cell Adhesion , Mice , Organoids/metabolism , Organoids/cytology
4.
Int J Mol Sci ; 25(8)2024 Apr 11.
Article in English | MEDLINE | ID: mdl-38673812

ABSTRACT

Here, we report on the development of a cost-effective, well-characterized three-dimensional (3D) model of bone homeostasis derived from commonly available stocks of immortalized murine cell lines and laboratory reagents. This 3D murine-cell-derived bone organoid model (3D-mcBOM) is adaptable to a range of contexts and can be used in conjunction with surrogates of osteoblast and osteoclast function to study cellular and molecular mechanisms that affect bone homeostasis in vitro or to augment in vivo models of physiology or disease. The 3D-mcBOM was established using a pre-osteoblast murine cell line, which was seeded into a hydrogel extracellular matrix (ECM) and differentiated into functional osteoblasts (OBs). The OBs mineralized the hydrogel ECM, leading to the deposition and consolidation of hydroxyapatite into bone-like organoids. Fourier-transform infrared (FTIR) spectroscopy confirmed that the mineralized matrix formed in the 3D-mcBOM was bone. The histological staining of 3D-mcBOM samples indicated a consistent rate of ECM mineralization. Type I collagen C-telopeptide (CTX1) analysis was used to evaluate the dynamics of OC differentiation and activity. Reliable 3D models of bone formation and homeostasis align with current ethical trends to reduce the use of animal models. This functional model of bone homeostasis provides a cost-effective model system using immortalized cell lines and easily procured supplemental compounds, which can be assessed by measuring surrogates of OB and OC function to study the effects of various stimuli in future experimental evaluations of bone homeostasis.


Subject(s)
Cell Differentiation , Extracellular Matrix , Organoids , Osteoblasts , Osteogenesis , Animals , Mice , Organoids/cytology , Organoids/metabolism , Osteoblasts/cytology , Osteoblasts/metabolism , Extracellular Matrix/metabolism , Bone and Bones/cytology , Bone and Bones/metabolism , Cell Line , Collagen Type I/metabolism , Hydrogels/chemistry , Calcification, Physiologic , Cell Culture Techniques, Three Dimensional/methods , Models, Biological
5.
Cell Mol Life Sci ; 81(1): 197, 2024 Apr 25.
Article in English | MEDLINE | ID: mdl-38664263

ABSTRACT

Congenital heart defects are associated with significant health challenges, demanding a deep understanding of the underlying biological mechanisms and, thus, better devices or platforms that can recapitulate human cardiac development. The discovery of human pluripotent stem cells has substantially reduced the dependence on animal models. Recent advances in stem cell biology, genetic editing, omics, microfluidics, and sensor technologies have further enabled remarkable progress in the development of in vitro platforms with increased fidelity and efficiency. In this review, we provide an overview of advancements in in vitro cardiac development platforms, with a particular focus on technological innovation. We categorize these platforms into four areas: two-dimensional solid substrate cultures, engineered substrate architectures that enhance cellular functions, cardiac organoids, and embryos/explants-on-chip models. We conclude by addressing current limitations and presenting future perspectives.


Subject(s)
Drug Evaluation, Preclinical , Heart , Tissue Engineering , Humans , Animals , Drug Evaluation, Preclinical/methods , Tissue Engineering/methods , Organoids/metabolism , Organoids/cytology , Pluripotent Stem Cells/cytology , Pluripotent Stem Cells/metabolism , Heart Defects, Congenital/genetics , Lab-On-A-Chip Devices
6.
Methods Mol Biol ; 2803: 35-48, 2024.
Article in English | MEDLINE | ID: mdl-38676883

ABSTRACT

The lack of a precise noninvasive, clinical evaluation method for cardiac fibrosis hinders the development of successful treatments that can effectively work in physiological settings, where tissues and organs are interconnected and moderating drug responses. To address this challenge and advance personalized medicine, researchers have turned to human-induced pluripotent stem (iPS) cells, which can be differentiated to resemble the human heart in terms of structure, function and cellular composition. In this chapter, we present an assay protocol that uses these iPS cells to generate heart organoids for the in vitro evaluation of cardiac fibrosis. By establishing this biological platform, we pave the way for conducting phenotype evaluation and treatment screening in a multiscale approach, aiming to discover effective interventions for the treatment of cardiac fibrosis.


Subject(s)
Cell Differentiation , Fibrosis , Induced Pluripotent Stem Cells , Organoids , Humans , Induced Pluripotent Stem Cells/cytology , Organoids/pathology , Organoids/cytology , Myocardium/pathology , Myocardium/cytology , Cell Culture Techniques/methods , Myocytes, Cardiac/cytology , Myocytes, Cardiac/pathology , Cells, Cultured
7.
Cell Rep ; 43(4): 114031, 2024 Apr 23.
Article in English | MEDLINE | ID: mdl-38583153

ABSTRACT

Outer radial glia (oRG) emerge as cortical progenitor cells that support the development of an enlarged outer subventricular zone (oSVZ) and the expansion of the neocortex. The in vitro generation of oRG is essential to investigate the underlying mechanisms of human neocortical development and expansion. By activating the STAT3 signaling pathway using leukemia inhibitory factor (LIF), which is not expressed in guided cortical organoids, we define a cortical organoid differentiation method from human pluripotent stem cells (hPSCs) that recapitulates the expansion of a progenitor pool into the oSVZ. The oSVZ comprises progenitor cells expressing specific oRG markers such as GFAP, LIFR, and HOPX, closely matching human fetal oRG. Finally, incorporating neural crest-derived LIF-producing cortical pericytes into cortical organoids recapitulates the effects of LIF treatment. These data indicate that increasing the cellular complexity of the organoid microenvironment promotes the emergence of oRG and supports a platform to study oRG in hPSC-derived brain organoids routinely.


Subject(s)
Cell Differentiation , Lateral Ventricles , Leukemia Inhibitory Factor , Organoids , Pluripotent Stem Cells , Humans , Organoids/metabolism , Organoids/cytology , Leukemia Inhibitory Factor/metabolism , Leukemia Inhibitory Factor/pharmacology , Pluripotent Stem Cells/metabolism , Pluripotent Stem Cells/cytology , Lateral Ventricles/cytology , Lateral Ventricles/metabolism , STAT3 Transcription Factor/metabolism , Neuroglia/metabolism , Neuroglia/cytology , Signal Transduction
8.
Biomater Adv ; 160: 213847, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38657288

ABSTRACT

Three-dimensional (3D) organoid models have been instrumental in understanding molecular mechanisms responsible for many cellular processes and diseases. However, established organic biomaterial scaffolds used for 3D hydrogel cultures, such as Matrigel, are biochemically complex and display significant batch variability, limiting reproducibility in experiments. Recently, there has been significant progress in the development of synthetic hydrogels for in vitro cell culture that are reproducible, mechanically tuneable, and biocompatible. Self-assembling peptide hydrogels (SAPHs) are synthetic biomaterials that can be engineered to be compatible with 3D cell culture. Here we investigate the ability of PeptiGel® SAPHs to model the mammary epithelial cell (MEC) microenvironment in vitro. The positively charged PeptiGel®Alpha4 supported MEC viability, but did not promote formation of polarised acini. Modifying the stiffness of PeptiGel® Alpha4 stimulated changes in MEC viability and changes in protein expression associated with altered MEC function, but did not fully recapitulate the morphologies of MECs grown in Matrigel. To supply the appropriate biochemical signals for MEC organoids, we supplemented PeptiGels® with laminin. Laminin was found to require negatively charged PeptiGel® Alpha7 for functionality, but was then able to provide appropriate signals for correct MEC polarisation and expression of characteristic proteins. Thus, optimisation of SAPH composition and mechanics allows tuning to support tissue-specific organoids.


Subject(s)
Cell Culture Techniques, Three Dimensional , Collagen , Drug Combinations , Epithelial Cells , Hydrogels , Laminin , Peptides , Proteoglycans , Laminin/pharmacology , Laminin/chemistry , Hydrogels/chemistry , Hydrogels/pharmacology , Proteoglycans/pharmacology , Proteoglycans/chemistry , Collagen/chemistry , Collagen/pharmacology , Peptides/pharmacology , Peptides/chemistry , Epithelial Cells/drug effects , Epithelial Cells/cytology , Humans , Female , Cell Culture Techniques, Three Dimensional/methods , Cell Survival/drug effects , Biocompatible Materials/chemistry , Biocompatible Materials/pharmacology , Mammary Glands, Human/cytology , Organoids/drug effects , Organoids/cytology , Cell Culture Techniques/methods
9.
BMC Mol Cell Biol ; 25(1): 14, 2024 Apr 30.
Article in English | MEDLINE | ID: mdl-38689222

ABSTRACT

BACKGROUND: Emerging evidence underscores the responsiveness of the mammalian intestine to dietary cues, notably through the involvement of LGR5 + intestinal stem cells in orchestrating responses to diet-driven signals. However, the effects of high-fat diet (HFD) on these cellular dynamics and their impact on gut integrity remain insufficiently understood. Our study aims to assess the multifaceted interactions between palmitic acid (PA), cell proliferation, and the intestinal epithelial barrier using a canine colonoid model. Canine models, due to their relevance in simulating human intestinal diseases, offer a unique platform to explore the molecular mechanisms underlying HFD derived intestinal dysfunction. RESULTS: Canine colonoids were subjected to PA exposure, a surrogate for the effects of HFD. This intervention revealed a remarkable augmentation of cell proliferative activity. Furthermore, we observed a parallel reduction in transepithelial electrical resistance (TEER), indicating altered epithelium barrier integrity. While E-cadherin exhibited consistency, ZO-1 displayed a noteworthy reduction in fluorescence intensity within the PA-exposed group. CONCLUSIONS: By employing canine intestinal organoid systems, we provide compelling insights into the impact of PA on intestinal physiology. These findings underscore the importance of considering both cell proliferative activity and epithelial integrity in comprehending the repercussions of HFDs on intestinal health. Our study contributes to a deeper understanding of the consequences of HFD on intestinal homeostasis, utilizing valuable translational in vitro models derived from dogs.


Subject(s)
Cell Proliferation , Diet, High-Fat , Intestinal Mucosa , Organoids , Palmitic Acid , Permeability , Animals , Dogs , Diet, High-Fat/adverse effects , Organoids/metabolism , Organoids/cytology , Intestinal Mucosa/metabolism , Intestinal Mucosa/cytology , Palmitic Acid/metabolism , Palmitic Acid/pharmacology , Intestines/cytology , Intestines/physiology , Intestinal Barrier Function
10.
Cell Stem Cell ; 31(5): 772-787.e11, 2024 May 02.
Article in English | MEDLINE | ID: mdl-38565140

ABSTRACT

Neonatal spinal cord tissues exhibit remarkable regenerative capabilities as compared to adult spinal cord tissues after injury, but the role of extracellular matrix (ECM) in this process has remained elusive. Here, we found that early developmental spinal cord had higher levels of ECM proteins associated with neural development and axon growth, but fewer inhibitory proteoglycans, compared to those of adult spinal cord. Decellularized spinal cord ECM from neonatal (DNSCM) and adult (DASCM) rabbits preserved these differences. DNSCM promoted proliferation, migration, and neuronal differentiation of neural progenitor cells (NPCs) and facilitated axonal outgrowth and regeneration of spinal cord organoids more effectively than DASCM. Pleiotrophin (PTN) and Tenascin (TNC) in DNSCM were identified as contributors to these abilities. Furthermore, DNSCM demonstrated superior performance as a delivery vehicle for NPCs and organoids in spinal cord injury (SCI) models. This suggests that ECM cues from early development stages might significantly contribute to the prominent regeneration ability in spinal cord.


Subject(s)
Carrier Proteins , Cytokines , Extracellular Matrix , Organoids , Spinal Cord Injuries , Spinal Cord , Animals , Organoids/metabolism , Organoids/cytology , Spinal Cord/metabolism , Extracellular Matrix/metabolism , Spinal Cord Injuries/therapy , Spinal Cord Injuries/pathology , Spinal Cord Injuries/metabolism , Rabbits , Cell Differentiation , Neural Stem Cells/metabolism , Neural Stem Cells/cytology , Tenascin/metabolism , Cell Proliferation , Animals, Newborn , Nerve Regeneration/physiology
11.
Cells ; 13(8)2024 Apr 13.
Article in English | MEDLINE | ID: mdl-38667289

ABSTRACT

Oligodendrocytes originating in the brain and spinal cord as well as in the ventral and dorsal domains of the neural tube are transcriptomically and functionally distinct. These distinctions are also reflected in the ultrastructure of the produced myelin, and the susceptibility to myelin-related disorders, which highlights the significance of the choice of patterning protocols in the differentiation of induced pluripotent stem cells (iPSCs) into oligodendrocytes. Thus, our first goal was to survey the different approaches applied to the generation of iPSC-derived oligodendrocytes in 2D culture and in organoids, as well as reflect on how these approaches pertain to the regional and spatial fate of the generated oligodendrocyte progenitors and myelinating oligodendrocytes. This knowledge is increasingly important to disease modeling and future therapeutic strategies. Our second goal was to recap the recent advances in the development of oligodendrocyte-enriched organoids, as we explore their relevance to a regional specification alongside their duration, complexity, and maturation stages of oligodendrocytes and myelin biology. Finally, we discuss the shortcomings of the existing protocols and potential future explorations.


Subject(s)
Cell Differentiation , Induced Pluripotent Stem Cells , Oligodendroglia , Organoids , Induced Pluripotent Stem Cells/cytology , Induced Pluripotent Stem Cells/metabolism , Oligodendroglia/cytology , Oligodendroglia/metabolism , Organoids/cytology , Humans , Animals , Myelin Sheath/metabolism , Cell Culture Techniques/methods
12.
Nat Commun ; 15(1): 3567, 2024 Apr 26.
Article in English | MEDLINE | ID: mdl-38670973

ABSTRACT

The emergence of retinal progenitor cells and differentiation to various retinal cell types represent fundamental processes during retinal development. Herein, we provide a comprehensive single cell characterisation of transcriptional and chromatin accessibility changes that underline retinal progenitor cell specification and differentiation over the course of human retinal development up to midgestation. Our lineage trajectory data demonstrate the presence of early retinal progenitors, which transit to late, and further to transient neurogenic progenitors, that give rise to all the retinal neurons. Combining single cell RNA-Seq with spatial transcriptomics of early eye samples, we demonstrate the transient presence of early retinal progenitors in the ciliary margin zone with decreasing occurrence from 8 post-conception week of human development. In retinal progenitor cells, we identified a significant enrichment for transcriptional enhanced associate domain transcription factor binding motifs, which when inhibited led to loss of cycling progenitors and retinal identity in pluripotent stem cell derived organoids.


Subject(s)
Cell Differentiation , Retina , Single-Cell Analysis , Stem Cells , Humans , Single-Cell Analysis/methods , Retina/cytology , Retina/metabolism , Stem Cells/cytology , Stem Cells/metabolism , Organoids/metabolism , Organoids/cytology , Gene Expression Regulation, Developmental , Chromatin/metabolism , Transcription Factors/metabolism , Transcription Factors/genetics , Pluripotent Stem Cells/cytology , Pluripotent Stem Cells/metabolism , RNA-Seq , Cell Lineage , Transcriptome
13.
J Vis Exp ; (206)2024 Apr 05.
Article in English | MEDLINE | ID: mdl-38647281

ABSTRACT

Organoid cell culture systems can recapitulate the complexity observed in tissues, making them useful in studying host-pathogen interactions, evaluating drug efficacy and toxicity, and tissue bioengineering. However, applying these models for the described reasons may be limited because of the three-dimensional (3D) nature of these models. For example, using 3D enteroid culture systems to study digestive diseases is challenging due to the inaccessibility of the intestinal lumen and its secreted substances. Indeed, stimulation of 3D organoids with pathogens requires either luminal microinjection, mechanical disruption of the 3D structure, or generation of apical-out enteroids. Moreover, these organoids cannot be co-cultured with immune and stromal cells, limiting in-depth mechanistic analysis into pathophysiological dynamics. To circumvent this, we optimized a bovine primary cell two-dimensional (2D) enteroid-derived monolayer culture system, allowing co-culture with other relevant cell types. Ileal crypts isolated from healthy adult cattle were cultured to generate 3D organoids that were cryopreserved for future use. A 2D monolayer was created using revived 3D enteroids that were passaged and disrupted to yield single cells, which were seeded on basement membrane extract-coated transwell cell culture inserts, thereby exposing their apical surface. The intestinal monolayer polarity, cellular differentiation, and barrier function were characterized using immunofluorescence microscopy and measuring transepithelial electrical resistance. Stimulation of the apical surface of the monolayer revealed the expected functionality of the monolayer, as demonstrated by cytokine secretion from both apical and basal compartments. The described 2D enteroid-derived monolayer model holds great promise in investigating host-pathogen interactions and intestinal physiology, drug development, and regenerative medicine.


Subject(s)
Organoids , Animals , Cattle , Organoids/cytology , Translational Research, Biomedical/methods , Cell Culture Techniques/methods , Coculture Techniques/methods , Ileum/cytology
14.
Nature ; 629(8011): 450-457, 2024 May.
Article in English | MEDLINE | ID: mdl-38658753

ABSTRACT

Three-dimensional organoid culture technologies have revolutionized cancer research by allowing for more realistic and scalable reproductions of both tumour and microenvironmental structures1-3. This has enabled better modelling of low-complexity cancer cell behaviours that occur over relatively short periods of time4. However, available organoid systems do not capture the intricate evolutionary process of cancer development in terms of tissue architecture, cell diversity, homeostasis and lifespan. As a consequence, oncogenesis and tumour formation studies are not possible in vitro and instead require the extensive use of animal models, which provide limited spatiotemporal resolution of cellular dynamics and come at a considerable cost in terms of resources and animal lives. Here we developed topobiologically complex mini-colons that are able to undergo tumorigenesis ex vivo by integrating microfabrication, optogenetic and tissue engineering approaches. With this system, tumorigenic transformation can be spatiotemporally controlled by directing oncogenic activation through blue-light exposure, and emergent colon tumours can be tracked in real-time at the single-cell resolution for several weeks without breaking the culture. These induced mini-colons display rich intratumoural and intertumoural diversity and recapitulate key pathophysiological hallmarks displayed by colorectal tumours in vivo. By fine-tuning cell-intrinsic and cell-extrinsic parameters, mini-colons can be used to identify tumorigenic determinants and pharmacological opportunities. As a whole, our study paves the way for cancer initiation research outside living organisms.


Subject(s)
Carcinogenesis , Colon , Colorectal Neoplasms , Organoids , Organoids/pathology , Organoids/cytology , Animals , Colorectal Neoplasms/pathology , Carcinogenesis/pathology , Mice , Colon/pathology , Colon/cytology , Humans , Female , Optogenetics , Single-Cell Analysis , Tissue Engineering/methods , Cell Transformation, Neoplastic/pathology , Male , Light , Spatio-Temporal Analysis , Time Factors , Tumor Microenvironment
15.
Zhonghua Kou Qiang Yi Xue Za Zhi ; 59(5): 496-501, 2024 May 09.
Article in Chinese | MEDLINE | ID: mdl-38637004

ABSTRACT

Regenerating tissues similar to dental structure with normal function are putatively to be the aim in tooth regeneration filed. Currently, researchers preliminarily achieved tooth regeneration by applying dental pulp stem cells (DPSC) and stem cells from human exfoliated deciduous teeth (SHED). However, the regeneration efficiency remains unstable and needs further investigation. The development of single-cell RNA sequencing and organoid culture system provide potential of precise, targeted and controllable functional regeneration. This article reviews the current state of DPSC/SHED on tooth regeneration, and analyzes characteristics and hotspots of them, aiming to shed light on clinical translational application of stable and efficient tooth regeneration.


Subject(s)
Dental Pulp , Regeneration , Stem Cells , Tooth, Deciduous , Dental Pulp/cytology , Humans , Stem Cells/cytology , Tooth, Deciduous/cytology , Tissue Engineering/methods , Organoids/cytology , Cell Differentiation
16.
Cell Rep ; 43(4): 114019, 2024 Apr 23.
Article in English | MEDLINE | ID: mdl-38551965

ABSTRACT

Thymic epithelial cells (TECs) orchestrate T cell development by imposing positive and negative selection on thymocytes. Current studies on TEC biology are hampered by the absence of long-term ex vivo culture platforms, while the cells driving TEC self-renewal remain to be identified. Here, we generate long-term (>2 years) expandable 3D TEC organoids from the adult mouse thymus. For further analysis, we generated single and double FoxN1-P2A-Clover, Aire-P2A-tdTomato, and Cldn4-P2A-tdTomato reporter lines by CRISPR knockin. Single-cell analyses of expanding clonal organoids reveal cells with bipotent stem/progenitor phenotypes. These clonal organoids can be induced to express Foxn1 and to generate functional cortical- and Aire-expressing medullary-like TECs upon RANK ligand + retinoic acid treatment. TEC organoids support T cell development from immature thymocytes in vitro as well as in vivo upon transplantation into athymic nude mice. This organoid-based platform allows in vitro study of TEC biology and offers a potential strategy for ex vivo T cell development.


Subject(s)
Epithelial Cells , Forkhead Transcription Factors , Organoids , Thymus Gland , Animals , Organoids/cytology , Organoids/metabolism , Thymus Gland/cytology , Epithelial Cells/cytology , Epithelial Cells/metabolism , Mice , Cell Differentiation , Mice, Nude , T-Lymphocytes/cytology , T-Lymphocytes/metabolism , Mice, Inbred C57BL , Transcription Factors/metabolism , Transcription Factors/genetics
17.
J Virol ; 98(3): e0180223, 2024 Mar 19.
Article in English | MEDLINE | ID: mdl-38334329

ABSTRACT

With a high incidence of acute kidney injury among hospitalized COVID-19 patients, considerable attention has been focussed on whether SARS-CoV-2 specifically targets kidney cells to directly impact renal function, or whether renal damage is primarily an indirect outcome. To date, several studies have utilized kidney organoids to understand the pathogenesis of COVID-19, revealing the ability for SARS-CoV-2 to predominantly infect cells of the proximal tubule (PT), with reduced infectivity following administration of soluble ACE2. However, the immaturity of standard human kidney organoids represents a significant hurdle, leaving the preferred SARS-CoV-2 processing pathway, existence of alternate viral receptors, and the effect of common hypertensive medications on the expression of ACE2 in the context of SARS-CoV-2 exposure incompletely understood. Utilizing a novel kidney organoid model with enhanced PT maturity, genetic- and drug-mediated inhibition of viral entry and processing factors confirmed the requirement for ACE2 for SARS-CoV-2 entry but showed that the virus can utilize dual viral spike protein processing pathways downstream of ACE2 receptor binding. These include TMPRSS- and CTSL/CTSB-mediated non-endosomal and endocytic pathways, with TMPRSS10 likely playing a more significant role in the non-endosomal pathway in renal cells than TMPRSS2. Finally, treatment with the antihypertensive ACE inhibitor, lisinopril, showed negligible impact on receptor expression or susceptibility of renal cells to infection. This study represents the first in-depth characterization of viral entry in stem cell-derived human kidney organoids with enhanced PTs, providing deeper insight into the renal implications of the ongoing COVID-19 pandemic. IMPORTANCE: Utilizing a human iPSC-derived kidney organoid model with improved proximal tubule (PT) maturity, we identified the mechanism of SARS-CoV-2 entry in renal cells, confirming ACE2 as the sole receptor and revealing redundancy in downstream cell surface TMPRSS- and endocytic Cathepsin-mediated pathways. In addition, these data address the implications of SARS-CoV-2 exposure in the setting of the commonly prescribed ACE-inhibitor, lisinopril, confirming its negligible impact on infection of kidney cells. Taken together, these results provide valuable insight into the mechanism of viral infection in the human kidney.


Subject(s)
Angiotensin-Converting Enzyme 2 , Kidney , Organoids , SARS-CoV-2 , Virus Internalization , Humans , Angiotensin-Converting Enzyme 2/metabolism , COVID-19/complications , COVID-19/virology , Kidney/cytology , Kidney/drug effects , Kidney/metabolism , Kidney/virology , Lisinopril/pharmacology , Lisinopril/metabolism , Organoids/cytology , Organoids/drug effects , Organoids/metabolism , Organoids/virology , Pandemics , SARS-CoV-2/metabolism , SARS-CoV-2/pathogenicity , Spike Glycoprotein, Coronavirus/metabolism , Virus Internalization/drug effects , Peptidyl-Dipeptidase A/metabolism , Angiotensin-Converting Enzyme Inhibitors/pharmacology , Acute Kidney Injury/etiology , Acute Kidney Injury/metabolism , Acute Kidney Injury/virology , Kidney Tubules, Proximal/cytology , Kidney Tubules, Proximal/drug effects , Kidney Tubules, Proximal/metabolism , Kidney Tubules, Proximal/virology , Receptors, Coronavirus/metabolism , Models, Biological , Serine Endopeptidases/metabolism , Endosomes/drug effects , Endosomes/metabolism , Endosomes/virology , Gene Expression Regulation/drug effects , Stem Cells/cytology
18.
Nature ; 623(7986): 397-405, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37914940

ABSTRACT

Microglia are specialized brain-resident macrophages that arise from primitive macrophages colonizing the embryonic brain1. Microglia contribute to multiple aspects of brain development, but their precise roles in the early human brain remain poorly understood owing to limited access to relevant tissues2-6. The generation of brain organoids from human induced pluripotent stem cells recapitulates some key features of human embryonic brain development7-10. However, current approaches do not incorporate microglia or address their role in organoid maturation11-21. Here we generated microglia-sufficient brain organoids by coculturing brain organoids with primitive-like macrophages generated from the same human induced pluripotent stem cells (iMac)22. In organoid cocultures, iMac differentiated into cells with microglia-like phenotypes and functions (iMicro) and modulated neuronal progenitor cell (NPC) differentiation, limiting NPC proliferation and promoting axonogenesis. Mechanistically, iMicro contained high levels of PLIN2+ lipid droplets that exported cholesterol and its esters, which were taken up by NPCs in the organoids. We also detected PLIN2+ lipid droplet-loaded microglia in mouse and human embryonic brains. Overall, our approach substantially advances current human brain organoid approaches by incorporating microglial cells, as illustrated by the discovery of a key pathway of lipid-mediated crosstalk between microglia and NPCs that leads to improved neurogenesis.


Subject(s)
Brain , Cholesterol , Induced Pluripotent Stem Cells , Microglia , Neural Stem Cells , Neurogenesis , Organoids , Animals , Humans , Mice , Brain/cytology , Brain/metabolism , Cell Differentiation , Induced Pluripotent Stem Cells/cytology , Microglia/cytology , Microglia/metabolism , Organoids/cytology , Organoids/metabolism , Cholesterol/metabolism , Neural Stem Cells/cytology , Neural Stem Cells/metabolism , Axons , Cell Proliferation , Esters/metabolism , Lipid Droplets/metabolism
19.
J Virol ; 97(10): e0069623, 2023 10 31.
Article in English | MEDLINE | ID: mdl-37796129

ABSTRACT

IMPORTANCE: Human cytomegalovirus (HCMV) infection is the leading cause of non-heritable birth defects worldwide. HCMV readily infects the early progenitor cell population of the developing brain, and we have found that infection leads to significantly downregulated expression of key neurodevelopmental transcripts. Currently, there are no approved therapies to prevent or mitigate the effects of congenital HCMV infection. Therefore, we used human-induced pluripotent stem cell-derived organoids and neural progenitor cells to elucidate the glycoproteins and receptors used in the viral entry process and whether antibody neutralization was sufficient to block viral entry and prevent disruption of neurodevelopmental gene expression. We found that blocking viral entry alone was insufficient to maintain the expression of key neurodevelopmental genes, but neutralization combined with neurotrophic factor treatment provided robust protection. Together, these studies offer novel insight into mechanisms of HCMV infection in neural tissues, which may aid future therapeutic development.


Subject(s)
Antibodies, Neutralizing , Cytomegalovirus Infections , Cytomegalovirus , Gene Expression , Nerve Growth Factors , Humans , Antibodies, Neutralizing/immunology , Antibodies, Neutralizing/pharmacology , Antibodies, Neutralizing/therapeutic use , Cytomegalovirus/drug effects , Cytomegalovirus/immunology , Cytomegalovirus/physiology , Cytomegalovirus Infections/drug therapy , Cytomegalovirus Infections/genetics , Cytomegalovirus Infections/immunology , Cytomegalovirus Infections/metabolism , Gene Expression/drug effects , Gene Expression/immunology , Induced Pluripotent Stem Cells/cytology , Nerve Growth Factors/pharmacology , Nerve Growth Factors/therapeutic use , Neural Stem Cells/cytology , Neural Stem Cells/metabolism , Neural Stem Cells/virology , Organoids/cytology , Organoids/metabolism , Organoids/virology , Receptors, Virus/antagonists & inhibitors , Receptors, Virus/metabolism , Viral Envelope Proteins/antagonists & inhibitors , Viral Envelope Proteins/immunology , Viral Envelope Proteins/metabolism , Virus Internalization/drug effects
20.
Nature ; 622(7982): 359-366, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37758944

ABSTRACT

The assembly of cortical circuits involves the generation and migration of interneurons from the ventral to the dorsal forebrain1-3, which has been challenging to study at inaccessible stages of late gestation and early postnatal human development4. Autism spectrum disorder and other neurodevelopmental disorders (NDDs) have been associated with abnormal cortical interneuron development5, but which of these NDD genes affect interneuron generation and migration, and how they mediate these effects remains unknown. We previously developed a platform to study interneuron development and migration in subpallial organoids and forebrain assembloids6. Here we integrate assembloids with CRISPR screening to investigate the involvement of 425 NDD genes in human interneuron development. The first screen aimed at interneuron generation revealed 13 candidate genes, including CSDE1 and SMAD4. We subsequently conducted an interneuron migration screen in more than 1,000 forebrain assembloids that identified 33 candidate genes, including cytoskeleton-related genes and the endoplasmic reticulum-related gene LNPK. We discovered that, during interneuron migration, the endoplasmic reticulum is displaced along the leading neuronal branch before nuclear translocation. LNPK deletion interfered with this endoplasmic reticulum displacement and resulted in abnormal migration. These results highlight the power of this CRISPR-assembloid platform to systematically map NDD genes onto human development and reveal disease mechanisms.


Subject(s)
CRISPR-Cas Systems , Gene Editing , Neurodevelopmental Disorders , Female , Humans , Infant, Newborn , Pregnancy , Cell Movement/genetics , CRISPR-Cas Systems/genetics , Interneurons/cytology , Interneurons/metabolism , Interneurons/pathology , Neurodevelopmental Disorders/genetics , Neurodevelopmental Disorders/pathology , Organoids/cytology , Organoids/embryology , Organoids/growth & development , Organoids/metabolism , Organoids/pathology , Endoplasmic Reticulum/metabolism , Prosencephalon/cytology , Prosencephalon/embryology , Prosencephalon/growth & development , Prosencephalon/metabolism , Prosencephalon/pathology , Active Transport, Cell Nucleus
SELECTION OF CITATIONS
SEARCH DETAIL
...